Table 1. Studies on predicting intravenous immunoglobulin resistance using machine learning algorithms

Ref. N Method AUC Sensitivity (%) Specificity (%) Accuracy (%)
21 767 Random Forest 0.916 79.7 87.3
22 109 XGBoost, etc 0.60–0.65 28–33 99–100 78–79
23 644 GBM 0.7423 30.43 99.19 88.44
24 1398 LightGBM 0.874 70.2 90.3
25 1002 LightGBM 0.78 50 88 78
26 7750 5 methods 0.626–0.711 18.1–21.6 93.3–95.0 77.6–82.1
Ref: reference; N: number of patients; AUC: area under receiver operating characteristic curve; XGBoost: extreme gradient boosting; GBM: gradient boosting machine.